Time Series representation for clustering using unbalanced

Haar wavelet transformation

Sehun Lee, Changryong Baek

Department of Statistics

Sungkyunkwan University

November 15, 2021



Context

1. Introduction

2. Method

3. Simulation

4. Discussion

=08 Haar ¥l0[=5 etz O|8¢ #& 3t

—

Ul

rot
Rl
o
e
Hl
rot
N



Introduction

* Recent time series data tend to be very high-dimensional and high-frequency.

* Due to heavy computation, many studies have been conducted on the dimension

reduction method to efficiently handle classification and clustering.
e.g. DFT(discrete fourier transformation), DWT(discrete wavelet transformation),

PAA(Piecewise aggregate approximation).
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Method

PAA(Piecewise aggregate approximation)(Keogh, 2001).

PAA is one of the ways to

reduce time series dimensions.

Divide into segments of the same size(blocks)

and average each segment.

Development: SAX

(symbolic aggregate approximation)
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Method

SAX(Symbolic aggregate approximation)(Lin, 2007).

= A method of converting to discrete symbolic data after dimension reduction through PAA.

Features Limitations
Dimension reduction effect. Performance depends on the number of
Apply to discrete data. segments(w) which determined by the user.
e.g. text processing, Bioinformatics (not data adaptive)

There is tradeoff according to w.

(cf. Figure 1.1.)

rot
>
)
e
HH
rot
(O]

Ul

=08 Haar ¥l0[=5 etz O|8¢ #& 3t



Method

DUHT (Discrete Unbalanced Haar Wavelet Transformation)(Fryzlewicz, 2007).

= A method of calculate local mean depending on the data to approximate the time series.

Features

The number of segments is not required and each segment has a different size.

The performance of classification and clustering is improved by
reducing information loss compared to the existing method.
(Dimension reduction works well). (cf. Figure 1.1.)

Possible to improve the performance of SAX.
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Method

SAX Procedure

1. Normalize the time series with different offsets and amplitude.
2. Apply PAA transformation
2-1. Divide the time series of length n into w equal-sized segments. (local mean)
X=X, X} to X = {Xq,, X}
2-2. Convert into symbolic data.

a is the number of symbolic, and find breakpoints § which divide the symbol areas.

P(B; <X <Bjs) == X ~N(0,1)

Table 2.1. Motation for SAX

X A time series. X = {.‘fl ...... X, }

X A PAA for a time series. X = {il ce .."':'”. }

X A symbol representaion of a time series. X = -'l"k] X }
w The number of PAA segments.

it The number of symbols{or alphbet size).

SAX = symbolic aggregate approximation; PAA = piecewise aggregate approximation.
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Method

Table 2.2. A lookup table that contains the breakpoints that divide a Gaussian distribution in an alphabet size

{a) of equiprobable regions

3. Let a], ] - 1, e, a Symb0| fOr d. ’ Alphabet size (a)
' 3 | 5 f
— —~ &) =43 —().67 —().54 =0.497
4. If ,8]' <X; < ﬂj+1, Xi = a; B 0.43 0.00 ~0.23 ~0.43
B4 .67 (.25 (1.LH]

By .54 (1.43

The clustering of SAX is calculated by the 5. 007
distance measure MINDIST.

Figure 2.1.

A

a=3, discrete symbol = {c,a,a,a,b,b,c,b}
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Method

DUHT Procedure

Unbalanced Haar vector: 5 . (orthnormal basis).
o 1

Q) = 1 1 51 1 1 21
lps,b,e “\p—s+1 e—s+1 {s< = b} e—b e—s+1 {b+1<li<e}

Where s: start point( =1), b: break point , e: end point (=n)

[ =

1. So'l — 1) eO,l = I
2. First break point, byy 13 = argmax,, ‘(X’ Wiso 1»b'601}>‘

3. Then, IIJO'l = l~p{so,1,bo,1,eo,1}

4. Repeat until no more vectors are generated. (generally, /% = Lp{sjk,bjk’ejk} )

Define unbalanced Haar coefficient, dg; 3 = (X, L|Jj’k>
Time series X, X; = Z]-,k dj,ktpf"‘(i) ,i = 1,---,n (orthonormality)

=08 Haar ¥l0[=5 etz O|8¢ #& 3t

(i
rOt

FAIAE #3H 9

7
°



Method

DUHT Procedure

ej,k

1 Z z v

— 1 — . .] Ik ] ] - . cee .

j,k’ej,k - e: k — S k + 1 X] - ij,k!ej,k - d]/,kllp (l),l S_],k’ ) e],k (by UHT)_
PR TSk Ui<TH)

X

Why DUHT?

DUHT decomposes time series in finer and finer regimes of changes in local mean level.

This transformation seems to be the one among available methods that leads to simplest structure

of inter-arrivals and jumps from zero of the series of changes in mean levels(Baek and Pipiras, 2009).
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Method

Small DUHT coefficient, dy; k3 can be interpreted as noise.

* Remove small dg; ;3. by hard thresholding, dg; iy — Nj,k X — X

To prevent imbalance,

i ML
R Wik

e Set p, max{| }< p,pE€ [%,1)

. o+ = o
Let |L|Jf'k|, |L|J]’k| and |L|Jf'k| denote the number of non-zero, positive and
negative components of vector Y/’%, respectively.
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Method

SAX based on DUHT Procedure

X A time series. X = {X;...., X, }.

X A unbalanced Haar wavelet transformation for a time series. X = {,fl._ - X, I

X A dimensionality reduction of a unbalanced Haar wavelet transformation X.
X ={Xi....,Xu}.

X A symbol representation of a time series. X = {i”l, X }.

xd A duplicated symbol representation to measure the distance between two time series.
X4 = (X¢,..., X7},

S; A segment defined in the interval of (nj—1,n;].

w The number of segments before duplication.

w The number of segments after duplication.

a The number of symbols(or alphabet size).
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Method

SAX based on DUHT Procedure

o m Nz N
Figure 3.1. Example of unbalanced Haar wavelet transformation for a time series

Time series points belonging to the same segment will have the same constant value.

~

Xi = Clj - Xi= Clj,j = 1,'“,W.
Discretization is performed in the same way as page 8, number 3.

Now we get discrete symbol, X = { X;,--,X,, }.
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Method

—

Compare two transformed time series, Q = {0, ---,Q/V;q}, C={Cy,,Cy.}
1) Different break points
2) Different length.

— Hard to compute distance.

Solve this problem by define the union set of break points.

e.g. Q = {a,b,c,d}, break points = {5, 10, 20}

C= {a,b,c,b,e}, break points = {5, 10, 15, 20}

—

Find é?l = {a,b,c,c,d} (duplicate) and compare it with C¢.
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Simulation

Classification

28 datasets from UCR archives.

Classification error, Figure 4.1.

Compression ratio, Figure 4.2.

(Euclidean :1)

SAX vs. Proposed Method
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Figure 4.1. Comparision of 1-NIN classification error rate o

tion.

Before Adjustment of length,
Mean Mumber of Segments

Euclidean Distance vs. Proposed Method
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Simulation

Hierarchical Clustering

UCR archives Contro Chart
Level: Normal, cyclic, trend

Method: Proposed Method, SAX, Euclidean distance

Proposed Methad SAX Euclidean distance Normal class Cyclic class
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MJ]W Figure 4.4. Normal and cyclic class converted by the piecewise aggregate approximation.
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Figure 4.3. Hierarchical clustering of the control chart dataset. SAX = svmbolic aggregate approximation. Figure 4.2, Normal and cyclic class converted by the unbalanced Iaar wavelet transformation,
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Conclusion

Summary
1. DUHT needs more calculation than PAA, but remove the ambiguity of setting w
and set w depending on the data.

2. Dimensions are effectively reduced

while preserving important pattern information by dividing into segments of different sizes.
Future study
1. p selection problem. If the break point is too close to the start and end points, the number of data

is insufficient to find a point of change.

2. a(the number of letters) selection problem.
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