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Introduction

Model Selection Procedures

▶ Local prior

▶ Frequentist methods

▶ Nonlocal prior
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Local prior

• Local prior

e.g. g-priors(Liang et al., 2008), intrinsic Bayes factors(Berger and Pericchi,1996),

fractional Bayes factors(O’Hagan, 1995).

Most current Bayesian model selection procedures employ this prior.

Positive at null parameter values.

Assign a posterior probability of 0 to the true model(Theorem 2).
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Frequentist method

• Frequentist method

e.g. SCAD(Fan and Li, 2001), adaptive Lasso(Zou, 2006),

Elastic net algorithm(Zou and Hastie, 2005), and Dantzig selector(Candes and Tao, 2007)

Fan and Peng(2004) showed a consistency property that identify the correct model to

certain penalized-likelihood-based model selection procedure; where p < O(n
1
3 )

5 / 37



Nonlocal prior

• Nonlocal prior

Identically zero whenever a model parameter is equal to its null value.

Nonlocal prior’s model selection have a consistency property which assign a posterior

probability of 1 to the true model as the sample size n increases, p = O(n).

▶ Especially in large sample settings, model selection based on nonlocal prior densities

are often better able to identify the correct model and have smaller prediction errors.
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Nonlocal prior
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Consistency

• Consistency

Consistency in this paper ̸= Pairwise consistency

Examples

Intrinsic Bayes factors become unbounded as p=O(n), and BIC p=O(nα), α < 1(Moreno,

Giron and Casella, 2010).

Pairwise consistency

Bayes factor between the true model and any single model k ∈ J as n increases.It is much

weaker property than model consistency since it’s possible to achive when the posterior

probability of the true model approaches 0.
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Nonlocal prior

• MOM and iMOM prior(Johnson and Rossel,2010).

0 only when all components of the parameter vector are 0.

1. MOM prior.

πM(θ) =
(θ − θ0)

2k

τk
πb(θ), τk =

∫
θ

(θ − θ0)
2kπb(θ)dθ

2. iMOM prior.

πI (θ) =
kτν/2

Γ(ν/2k)
(θ − θ0)

2−(ν+1)/2
exp

[
− { (θ − θ0)

2

τ
}−k

]
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Nonlocal prior

We will put much stronger penalty on the regression vector.

1. pMOM prior (Product case of MOM prior).

π(β|τ, σ2, r) = dp(2π)
−p/2(τσ2)−rp−p/2|Ap|

1
2 exp

[
− 1

2τσ2
βtApβ

] p∏
i=1

β2r
i

2. piMOM prior (Product case of iMOM prior).

π(β|τ, σ2, r) = (τσ2)rp/2

Γ(r/2)p

p∏
i=1

|βi |−(r+1) exp

(
− τσ2

β2i

)

for τ > 0, Ap a p × p nonsingular scale matrix, and r = 1,2,....
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Main result

• Goal: To select the nonzero components of β from Yn ∼ N(Xnβ, σ
2In), p < n.

Sampling density is assumed to be Yk |βk , σ
2 ∼ N(Xkβk , σ

2Ik).

Denote t the true model.

Theorem 1. pMOM prior satisfies p(t|yn)
p−→ 1. with known σ2

Corollary1. pMOM prior satisfies p(t|yn)
p−→ 1. with unknown σ2

Corollary2. Assume the conditions of Corollary 1 hold with piMOM prior.

Theorem 2. Local prior satisfies p(t|yn)
p−→ 0..

Table: Theorems for consistency
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Theorem 1

• Theorem 1.

p(t|yn) =
p(t)mt(yn)∑
k∈J p(k)mk(yn)

=
p(t)mt(yn)∑

t⊂k p(k)mk(yn) +
∑

t ̸⊂k p(k)mk(yn) + p(t)mt(yn)

=

[∑
t⊂k

p(k)mk(yn)

p(t)mt(yn)
+
∑
t̸⊂k

p(k)mk(yn)

p(t)mt(yn)
+ 1

]−1
p−→ 1, r ≥ 2.

Where, mk(yn) = dk(2π)
−n/2τ−k/2−rk(σ2)n/2−rk [ |Ak |

|Ck | ]
1/2exp[− Rk

2σ2 ]Ek(
∏k

i=1 β
2r
ki
)

mk(yn)
mt(yn)

p−→ exp(−∞)
p−→ 0. where, Rk = y tn(In − XkC

−1
k X t

k )yn and Ck = X t
kXk +

1
τAk .
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Theorem 1 (Corollary1, Corollary2)

• Corollary 1.

Consider the case σ is unknown: Set σ2 ∼ IG (α,ψ)

Then,

mk(yn) = dk(2π)
−n/22ν/2τ−rk−k/2

[
|Ak |
|Ck |

]1/2
ψα

Γ(α)(νks
2
k )

−νk/2Γ(νk2 )E
T
k (

∏
i∈k β

2r
i ), r ≥ 2

• Corollary 2.

Consider the case piMOM prior.

Established from the consistency of pMOM priors under similar conditions, Ak = Ik .
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Theorem 2

• Theorem 2.

p

[
mk(yn)

mt(yn)
> n1/2(

c

M
)t/2

√
2πσ2

M
cL

]
a.s.−−→ 1,

πLk (γk)

πLt (βt)
≥ cL > 0.

p(t|yn) =
p(t)mt(yn)∑
k∈J p(k)mk(yn)

Posterior probability of the true model goes 0 whenever the following conditions apply

▶ Local prior densities are imposed

▶ The number of possible covariates is greater than O(
√
n).

▶ The relative prior probabilities assigned to all models are bounded away from 0.
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Simulation Interests and Challenging

• We are interested in not only identifying the most probable model, but also assessing its

probability and the probability of any other high-probability models.

▶ i.e. We need to evaluate p(t|yn) = p(t)mt(yn)∑
k∈J p(k)mk(yn)

.

• Problem : Evaluating a marginal density mt(yn) =
∫
f (yn|βt)π(βt)dβt may require

numerical evaluation of a potentially high-dimensional integral.

▶ Even piMOM has no analytic expressions.

• Solution : Laplace Approximation
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Laplace Approximation

• Tierney and Kadane (1986) :

E (g(θ)|y) =
∫

g(θ)f (y |θ)π(θ)dθ

=

∫
g(θ)e l(θ)π(θ)dθ where l(θ) = log f (y |θ)

=

∫
en·

1
n
{log g(θ)+log π(θ)+l(θ)}dθ

=

∫
enL(θ)dθ where L(θ) =

1

n
{log g(θ) + log π(θ) + l(θ)}

Here, let θ̂ is the mode of L(θ) and Σ is the inverse of Hessian matrix.
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Laplace Approximation

• Tierney and Kadane (1986) : Cont’d∫
enL(θ)dθ =

∫
exp

[
nL(θ̂)− n

2
(θ − θ̂)TΣ−1(θ − θ̂)

]
dθ by Taylor’s Expansion

= exp
[
nL(θ̂)

]
·
(√

2π

n

)p(
detΣ

) 1
2

θ̂ : Newton-Raphson method by setting θn+1 = θn −
L
′
(θn)

L′′(θn)

• More details in Luke Tierney and Joseph B.Kadane (1986)
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Laplace Approximation marginal density for pMOM

• marginal density for pMOM :

mk(yn) =
Γ(νk2 )ψ

α2
νk
2 (2ψ + yTy − β̃

T
k Ck β̃k)

− νk
2

Γ(α) [(2r − 1)!!]k (2π)
n
2 τ

k
2
+rk

×
(
∏

i∈k(β
∗
i )

2r )exp
{
− νk−2

2νk
(β∗

k − β̃k)
T Ck

s2k
(β∗

k − β̃k)
}

|Ck + 2r
νk s

2
k

(νk−2)D(β̃
∗
k)|

1
2

where D(β∗
k) is the diagonal matrix with entry (i , j) given by 1/(β∗

k)
2

and β∗
k = argmaxβk

{
N

(
βk ; β̃k ,

νk
νk − 2

s2kC
−1
k

)∏
i∈k

β2ri

}
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Laplace Approximation marginal density for piMOM

• marginal density for piMOM :

mk(yn) =
ψα(2τ)

k
2

(2π)
n
2 Γ(α)

ef (β
∗
k ,η

∗)

|V (β∗
k ,η

∗)|
1
2
, where (β∗

k , η
∗) = argmax(βk ,η)

f (βk , η), η = log(σ2).

f (βk , η) = −2ψ+(yn−Xkβk )
TXT

k X k (yn−Xkβk )
2eη − η(n−k+2α)

2 −
∑

i∈k
τeη

β2
i
+ log(β2i ),

and V (βk , η) is a (k + 1)× (k + 1) matrix with the following blocks :

V11 = −e−ηXT
k Xk − diag(6τeηβ−4

k − 2β−2
k ),

V12 =
2τeη

β3
k

+ e−η(XT
k Xkβk − XT

k yn),

V22 = −2ψ+(yn−Xkβk )
TXT

k X k (yn−Xkβk )

2e−η −
∑

i∈k
τeη

β2
i
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MCMC Scheme

1. Choose an initial model kcurr

2. For i = 1, . . . , p,

2.1 Define model kcand by excluding or including βi from model kcurr , according to whether βi is

currently included or excluded from kcurr .

2.2 Compute

r =
mkcand (y)p(k

cand)

mkcand (y)p(kcand) +mkcurr (y)p(kcurr )

2.3 Draw u ∼ U(0, 1). If r > u, define kcurr = kcand

3. Repeat step 2 until a sufficiently long chain is acquired.
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Variable Selection Prior

• Scott and Berger(2010) : (a fully Bayesian method)

p(k|γ) = γk(1− γ)n−k , γ ∼ Beta(ζ0, ζ1).

Then, p(k) =

∫ 1

0
p(k|γ)π(γ)dγ

In general, set ζ0 = ζ1 = 1, then p(k) =
1

p + 1

(
p

k

)−1
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Setting Priors and some parameters

• revisited :

1. pMOM :

π(β|τ, σ2, r) = dp(2π)
−p/2(τσ2)−rp−p/2|Ap|1/2 exp

[
− 1

2τσ2
βTApβ

] p∏
i=1

β2r
i

2. piMOM :

π(β|τ, σ2, r) =
(τσ2)rp/2

Γ(r/2)p

p∏
i=1

|βi |−(r+1)exp

(
− τσ2

β2
i

)
• Need to specify : τ, σ2, Ap, r (Prior for β is already prepared.)
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Meaning of τ

• revisited :

1. MOM prior.

πM(θ) =
(θ − θ0)

2k

τk
πb(θ), τk =

∫
θ

(θ − θ0)
2kπb(θ)dθ

▶ base density πb(βi ) : βi ∼ N(0, σ2τλi )

2. iMOM prior.

πI (θ) =
kτν/2

Γ(ν/2k)
(θ − θ0)

2−(ν+1)/2
exp

[
− { (θ − θ0)

2

τ
}−k

]

▶ This have functional forms that are related to inverse gamma density functions, which means

that their behaviour near θ0 is similar to the behaviour of an inverse gamma density near 0.
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Setting τ

• Valen E. Johnson (2010) :

▶ pMOM(r=1) : τ = 0.348

▶ pMOM(r=2) : τ = 0.072

▶ piMOM : τ = 0.113

▶ At these values, the nonlocal priors assign 0.99 marginal prior probability to |βi | ≥ 0.2σ.

• In actual applications, the choice of τ should be determined after a subjective evaluation

of the magnitude of substantively important effect sizes.
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Setting σ2,Ap and r

• σ2 ∼ IG(0.001,0.001)

▶ It is a non-informative prior.

▶ It is known that posterior model probabilities are insensitive to the choice of the

inverse-gamma density parameters which are both much smaller than 1.

• Ap = Ip

▶ Actually, this is for computational advantages when using Laplace approximation.

• pMOM(r=1), pMOM(r=2), piMOM

▶ pMOM(r=1) are not always guaranteed to provide consistent model selection under the

assumptions of Theorem 1. However, this often leads to better finite sample properties.

▶ piMOM does not have r since it canceled out after Laplace approximation.
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Comparison of Bayesian Model Selection p(t|yn)

• σ2 = 1
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Comparison of Bayesian Model Selection p(t|yn)

• σ2 = 1.5
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Comparison of Bayesian Model Selection p(t|yn)

• σ2 = 2
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Comparison to Penalized Likelihood Selection p(t̂ = t)

• σ2 = 1
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Comparison to Penalized Likelihood Selection p(t̂ = t)

• σ2 = 1.5
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Comparison to Penalized Likelihood Selection p(t̂ = t)

• σ2 = 2
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Comparison to Penalized Likelihood Selection : RMSE

• σ2 = 1
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Comparison to Penalized Likelihood Selection : RMSE

• σ2 = 1.5
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Comparison to Penalized Likelihood Selection : RMSE

• σ2 = 2
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Summary of results

• remarks :

▶ model consistency

1. Nonlocal priors have shown the model consistency, even pMOM(r=1).

▶ true model probability

1. p(t̂ = t) went to 1 when using nonlocal priors, whereas the others stayed around 0.5, especially

LASSO showed poor performance.

▶ RMSE

1. Typically, piMOM has slightly smaller RMSE than SCAD.

2. When n ≥ 200, pMOM(r=1) outperformed SCAD.

3. The pMOM(r=2) was generally not competitive with any procedure except the LASSO.

• reasons :

1. piMOM has the heaviest tails and so the smallest biases.

2. pMOM(r=2) has the lighter tails at larger values of β. 35 / 37



Limitation of this paper

1. In MCMC step, the truly nonzero regression coefficients were the last variables to be

considered for inclusion in the initial model to avoid bias in the initial updates of the chain

toward the true model. In practice, we don’t know what the truly nonzero coefficients.

2. When using pMOM(r=1), this had only practical consistency in finite sample size, not

theoritical consistency, but showed low RMSE. In contrast, pMOM(r=2) satisfied

theoretical model consistency, but had large RMSE.
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Thank you
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