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Introduction

Anomaly detection; AD

As Industry 4.0 accelerates system automation, consequences of system failures can have

significant social impact(Lee 2008). To prevent this failure, the detection of anomalous is

more important.

Anomalies

Synonym: outlier observation, anomaly, discrodant observation, discords, contaminants

• Unwanted Data: noise, erroneous

• Event of interest: Analyze the outlier itself
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Introduction

Types of anomaly

• Point anomaly

1. Additional Outlier(AO)

2. Innovational Outlier(IO)

• Contextural anomaly

1. Level shift(LS)

2. Temporal Change(TC)
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Time series Anomaly Detection; TAD

Unsupervised TAD

Normal data are accesible during the training time and assign different anomaly scores to

inputs depending on the degree of their abnormality.

i.e., low anomaly scores: normal inputs, high anomaly scores: abnormal inputs

• Reconstruction-based AD (autoencoder, GAN)

Minimize the distance between a normal input and its reconstruction

• Forecasting-based AD (LSTM, gated recurrent unit)

Distance between the predicted and ground truth signal is an anomaly score.

• Others (GNNs: Graph neural networks, RADM: Real Time anomaly detection in

multivariate time series)
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TAD

TAD datasets

SWaT

WADI

SMD

MSL and SMAP

Table: benchmark

datasets

TAD methods

USAD(Unsupervise anomaly detection)

DAGMM(Deep Autoencoding Gaussian mixture model)

LSTM-VAE(LSTM-based variational autoencoder)

OmniAnomaly

MSCRED(Multi-scale convolutional recurrent encoder-decoder)

THOC(temporal hierarchical one-class network)

Table: TAD method examples
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Point adjustment; PA

For some datasets, the reported F1 scores exceed 0.9, giving an encouraging impression of

today’s TAD capabilities. However, we need to consider most of current TAD methods

measure the F1 score after Point adjustment(PA) proposed by(Xu et al. 2018)(Su et al.

2019; Audibert et al. 2020; Shen, Li, and Kwok 2020).

PA works as follows:

If at least one moment in a contiguous anomaly segment is detected as an anomaly, the entire

segment is then considered to be correctly detected.

• F1: Computed without PA

• F1PA: Computed with PA
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TAD formulation1

X = {x1, . . . , xT} is normalized and split into a series of windows W = {w1, . . . ,WT−τ+1},

where wt = {xt , . . . , xt+τ−1} and τ is the window size.

Anomaly label is yt ∈ {0, 1} and labels are obtained by comparing anomaly score A(wt) with

TAD threshold δ

ŷt =

1, A(wt) > δ

0, otherwise.
(1)

where, A(wt) = MSE (wt , ŵt) =
1
τ ||wt − ŵt ||2. After find ŷt compute precision(P), recall(R),

and F1 score.
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TAD formulation2

Multiple anomaly segments.

S: set of M anomaly segments S = {S1, . . . ,SM}, where Sm = {tms , . . . , tme }. tms , tme : start and

end times of Sm.

PA adjusted ŷt =

1, A(wt) > δ or t ∈ Sm and ∃t′∈SmA(wt′ ) > δ

0, otherwise.
(4)

According to equation (4), after PA, the P, R, F1 can only increase.
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Problems with PA

1. High possibility of overestimating the model performance.

2. Without PA, existing methods exhibit no improvement over the baseline.

In this paper, raise the question of whether the current TAD methods are being properly

evaluated and suggest directions for rigorous evaluation of TAD.
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Problems with PA

1. Overestimate the model performance

Despite their disparity, the predictions afterr PA become indistinguishable.

It is difficult to conclude that a model with a higher F1PA performs better than the others.
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Restate Recall

Where γ = Pr(t ∈ S) is a test dataset anomaly ratio and Pr(A(wt′ ) < δ
′
) =

∫ δ
′

0 U(0, 1) = δ
′
.

R =Pr(ŷt = 1|yt = 1) (6)

=Pr(ŷt = 1|t ∈ S)

=1− Pr(ŷt = 0|t ∈ S)

=1− Pr(∀t ′ ∈ S ,A(wt′ ) < δ
′ |t ∈ S)

=1− Πt′∈SPr(A(wt′ ) < δ
′ |t ∈ S)

=1− 1

γ
Πt′∈SPr(A(wt′ ) < δ

′
)

=1− δ
′(te−ts)
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Restate Precision

The anomaly ratio γ ∈ [0,0.2] and te − ts ranges from 100 to 5,000.

P =Pr(yt = 1|ŷt = 1) (7)

=
Pr(ŷt = 1|yt = 1)Pr(yt = 1)

Pr(ŷt = 1)

=R × Pr(yt = 1)

Pr(ŷt = 1)

=R × γ

Pr(ŷt = 1, yt = 1) + Pr( ˆyt = 1, yt = 0)

=(1− δ
′(te−ts))

γ

(γ − δ′(te−ts)) + (1− γ)(1− δ′)
.
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Untrained model with comparably high F1

Varying with δ
′
, te − ts , we can always obtain the F1PA close to 1 by changing δ

′
.

Without training, the outputs are likely to close to zero. However the effect of PA, obtained

from an untrained model look informative.

Also it is shown that F1PA increases even more when the window size gets longer.
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New protocol for TAD; PA%K

Test Dataset: SWaT(TAD benchmark dataset)

Blue: Normal samples

Orange: Abnormal samples

GT anomalies: (b), (c)

(b) shared more pattern with normal data(a) than (c).

→ Due to incomplete test set labeling such as (b), F1 can underestimate.

Therefore, the paper propose a new evaluation protocol PA%K.
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PA%K

• Effects

1. mitigate the overestimation effect of F1PA

2. mitigate the possibility of underestimation of F1.

• The idea

1. threshold: K (0 ≥ K ≥ 100)

2. modify (4), ŷt =

1, F1PA > δ or t ∈ Sm and
|{t

′
|t

′
∈Sm,A(wt

′ )>δ}|
|Sm| > K

0, otherwise.

The idea of PA%K is to apply PA to Sm only if the ratio of the number of

correctly detected anomalies in Sm to its length exceeds the threshold K.
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Problems with PA

2. Without PA, existing TAD have no improvement over the baseline

Mostly, TAD methods do not seem to have obtained a significant improvement over the

baseline that this paper proposes. Furthermore, several methods fail to exceed it.
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New baseline for TAD

Classification baseline

Case1: Defined as a random guess

New baseline

A(wt) = ||wt − η||2 ≃ ||wt ||2 (8)

where η = fθ(wt) and θ ∼ N (0, σ2),

Case2: input itself(η = 0), Case3: η ̸= 0 but most of them have a value of zero.
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Setting

Datasets: Benchmark TAD datasets on table1

Methods: on table2

Baseline

1. Random anomaly score: A(wt) ∼ U(0, 1)

2. Input itself an anomaly score(New): A(wt) = ||wt ||2 ↔ η = 0, extreme case of Eq. 8.

3. Anomaly score from the randomized model(New): Eq. 8.
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Comparison results1: Correlation between F1PA and F1

However, these numbers are insufficient to

assure the existence of correlation and

inference using only F1PA may have the risk

of improper evaluation of the detection

performance.
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Comparison results2

Compare the results of the AD methods with case 1-3. (Use the best numbers reported in the

original papers and officially reproduced results(Choi et al. 2021); if there were no available

scores, reproduced them referring to the officially provided codes.)

• The reproduced results are marked as †.

• Bold and underlined indicate the best and second best scores.

• The uparrow(↑) means

1. F1PA is higher than Case 1

2. F1 is higher than Case 2 or 3
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Comparison results2 (Con’t)
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Comparison results (Con’t)

Case 1

Expectation: Case1 does not reflects abnormality in an input → not able to detect anomalies.

Result: F1PA seems to perform well. (Overestimation effect of PA)

According to restated R and P, F1PA depends on γ, te − ts , δ.

1. The anomaly ratio(γ) of SMD was low. cf. table 1.

2. The anomaly segment length(te − ts) is short.

→ shorter anomaly segments, it’s less affected.
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Comparison results (Con’t)

Case 2 and 3

Depends on the length of the input window.

1. longer window, the F1 baseline becomes even larger.

A longer winow is more likely to contain more point anomalies.

2. τ becomes too large, F1 saturated or degrades because the window that used to contain

only normal signals unexpectedly contain anomalies in it.
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Effect of PA%K protocol

If K=0, it is equal to F1PA, K=100, it is equal to F1.

Setting: SWaT dataset from Case1

Result: Well-trained model show constant result regardless of value K. F1PA%K of Case1(blue)

rapidly decreased when K increased. It demonstrates that PA%K distinguished the formal from

the latter regardless of K.
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Summary

Summary

Current evaluation of TAD has pitfalls in two respects

1. PA overestimates the detection performance.

2. Results have been compared only with existing methods not against the baseline.

Suggestion

1. To mitigate overestimation PA, the paper propose F1PA%K .

2. Suggest new baselines(Case2 and 3) and carefully determine the window size.
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Further discussion

Outlier detection for multivariate long memory process

Based on Tsay(2000), we detect 4 types of Outlier(AO, IO, LS, TC) by VHAR (Vector

heterogeneous autoregressive)(Corsi, 2009).

T: number of observations Yt : observed time series, {ϵt = (ϵ1t , . . . , ϵkt)
′} iid∼ N (0,Σ)

Y
(d)
t = β0 +Φ(d)Y

(d)
t−1d +Φ(w)Y

(w)
t−1d +Φ(m)Y

(m)
t−1d + ϵt , t = 1, 2, ...,T ,

Y
(w)
t−1 =

1

5

4∑
j=0

Y
(d)
t−jd ,Y

(m)
t−1 =

1

22

21∑
j=0

Y
(d)
t−jd
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Further discussion(Con’t)

xt = (x1t , . . . , xkt)
′
: k dimensional multivariate time series which follows VHAR process.

yt = (y1t , . . . , ykt)
′
: Observed time series, ω = (ω1, . . . , ωk)

′
: impact size.

Φ(B)xt = c + ϵt , t = 1, . . . ,T where Φ(B) = I − Φ1B − · · · − Φ22B
22.

Time series with outlier: yt = xt + α(B)ωζ
(h)
t , ζ

(h)
h =

1, t = h

0, t ̸= h.
(∗)

Let, α(B) = Ψ(B) for IO, I for AO, (1− δB)−1 for TC and (1− B)−1 for LS.

Restates (*) by multiply Π(B) and subtract c0 → at = ϵt +Π(B)α(B)ωζ
(h)
t .

28 / 33



Further discussion(Con’t)

Statistics

1. Ji ,h = ˆwi ,h
′Σ−1

i ,h ŵi ,h where Σi ,h = (
∑n−h

i=0 Π̂i
′Σ−1Π̂i )

−1

2. Ci ,h = max1≤j≤k
| ˆwj,i,h|√
σj,i,h

.

Therefore, We need to find ât and ω̂i ,h for each outlier by use the under equation.

ât = ϵt +Π(B)α(B)wζht , ω̂i ,h = −
( n−h∑
i=0

Π̂∗
i Σ

−1P̂i
∗)−1

n−h∑
i=0

Π̂∗
i

T
Σ−1âh+i

Π(B)α(B) = Π(B)∗ = I −
∞∑
i=1

Π∗
i B

i = (I −
∞∑
i=1

ΠiB
i )(1− δB)−1,

( AO:δ=0, TC:0 < δ < 1, LS:δ = 1).
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Further discussion(Con’t)

1. Not using rolling window (window size=1)

2. Not using PA, we empirically get Critical values to find out outliers.

3. Find both outliers, point(AO,IO) and subsequence(LS, TC).
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Further discussion(Con’t)

VFARIMA, k=3, n=300, iterate=1000

VARFIMA,n=300 50% 90% 95% 97.5% 99%

Jmax (I , hI ) 14.32 18.13 19.53 20.65 22.27

Jmax (A, hA) 14.44 18.29 19.56 20.89 22.56

Jmax (L, hL) 7.62 11.90 13.29 15.21 17.16

Jmax (T , hT ) 13.64 17.60 19.23 20.82 21.95

VARFIMA,n=300 50% 90% 95% 97.5% 99%

Cmax (I , h∗I ) 3.36 3.83 4.01 4.13 4.26

Cmax (A, h∗A) 3.36 3.80 4.03 4.17 4.30

Cmax (L, h∗L ) 2.37 3.04 3.24 3.44 3.67

Cmax (T , h∗T ) 3.28 3.76 3.91 4.08 4.29
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TAD metric

Xu, H.; Chen, W. et al. 2018. Unsupervised anomaly detection via variational

auto-encoder for seasonal kpis in web applications.

’It is acceptable for an algorithm to trigger an alert for any point in a contiguous anomaly

segment, if the delay is not too long. Some metrics for anomaly detection have been proposed

to accommodate this preference, e.g., [22], but most are not widely accepted, likely because

they are too complicated. We instead use a simple strategy.’

[22] Alexander Lavin and Subutai Ahmad. 2015. Evaluating Real-Time Anomaly Detection

Algorithms–The Numenta Anomaly Benchmark. In Machine Learning and Applications (ICMLA), 2015

IEEE 14th International Conference on. IEEE, 38– 44.

32 / 33



Thank you
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