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The Role of Network Models

In this chapter, a number of basic mathematical models of network

structure and formation are covered.

1. Serve as baseline or comparison models for empirical social

networks.
2. Act as building blocks for more complex network simulations.

These are important models in the history of network science, but
they are still useful today to provide insight into fundamental

properties of social networks.
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Metric

B transitivity (clustering coefficient)
Transitivity is an index indicating how well nodes connected to

a node i. It bounds between 0 and 1.

M diameter
Diameter is an indicator for determining the size of a network,
the longest distance between nodes in the network. (—

Average path length)
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Regular Network model

Regular networks Definition: Each node has exactly the same

number of links(edges).

/I s

O-regular graph 1-regular graph 2-regular graph 3-regular graph
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Erdés—Rényi model
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Erdos—Rényi Random graph model

Erd6s—Rényi model is the first developed random graph model.
G(n,m) or G(n,p)

B G: random graph

B n: nodes

B m: edges

B p: probability
A random graph is produced by specifying the size of the desired
network, edges, or the probability of observing an edge.
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Erdés—Rényi model
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Erdés—Rényi Random graph model(Cont'd)

Let's calculate the probability for each graph, G(10,10).

First random graph Second random graph
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Erdés—Rényi Random graph model(Cont'd)

Let's calculate the probability for each graph, G(3,0.3).
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Erdés—Rényi model
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Erdés—Rényi Random graph model(Cont'd)

B For the G(n,m) model

» The number of nodes is fixed

> Average degree for a node: 2m/n

» However, other properties are hard to analytically obtain
B We will use a slightly different model, G(n,p)

» The number of nodes is fixed

» Furthermore, we fix probability p, that every possible edge

between the n nodes appears in the graph
» Note: the number of edges in this network is not fixed

* average degree= mean degree = mean node degree = average degree of a node
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Erdés—Rényi model
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Erdés—Rényi Random graph model(Cont'd)

Discoveries
B The average degree(c) is related to graph size(n) and edge
probability(p).
c=(n—-1p
B For large n, the network will have a Poisson degree

distribution.
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Erdés—Rényi model
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Erdés—Rényi Random graph model(Cont'd)

Proof) Probability that we get G(n,m)

n

P(G(n,m)) = (%})pm(l _p)(3)-m

Average number of edges for a network model: (g)p

kyung hee KIM

Network Analysis



Erdés—Rényi model
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Erdés—Rényi Random graph model(Cont'd)

Proof)

n

Average degree(c) = Z 2mp(G(n,m))

n

c.f., Average degree(mean node degree) for G(n,m) model is 2m/n,
8pg.
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Erdés—Rényi Random graph model(Cont'd)
An edge in a random graph, it's connected with equal probability p

with each N-1 other nodes. Hence p; that it has degree exactly k
is given by the binomial distribution (Newman et al., 2002).

n—1 1
pk=< . >p’“(1—p)” o

We know average degree is c, then rewrite

n—1 c k c o .
= - Y- nloe” e p
= (") ) )l et = Pois(c)
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Erdés—Rényi model
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Erdés—Rényi Random graph model(Cont'd)

Discoveries (Cont'd)

B Each nodes does not have to be connected to too many other

members for the network itself to be connected.
c )
c=n—-1pcp= ——»as nincrease, p — 0.
n —

B It derives small transitivity.
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small world model
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Small world model

However, Random graph model(low clustering) does not describe

the properties of many real-world social networks(high clustering).

Small world model (Watts and Strogatz, 1998) networks have
more realistic levels of transitivity. (e.g., six degrees of Kevin

Bacon in facebook.)
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small world model
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Small world model
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Watts and Strogatz motivated by this example.
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small world model
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Local Transitivity

Local Transitivity

= 26,. where ¢; is the number of edges
J ki (kr _ 1) between the neighbors of node i

Ci=1 Ci=1/2 Ci=0

In the middle plot, connections between 4 nodes are 4*3 = 12, and
interconnected edges are 3, transitivity = 3*%2/12 = 1/2.
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small world model
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Global Transitivity
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Small world model

Small-world networks tend to contain cliques, and near-cliques,
meaning sub-networks which have connections between almost any
two nodes within them. This follows from the defining property of
a high transitivity.

Even if the entire network is large, the entire network can be

closely connected by some specific nodes

Random Small-world Lattice
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High global efficiency High global efficiency Low global efficiency
Low local efficiency High local efficiency High local efficiency
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small world model
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Small world model
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Figures show how quickly rewiring reduces the diameter of a

network in the small-world model.
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Small world model

L: distance between two randomly chosen nodes

N: Number of nodes in the network

L < logN
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Scale-Free Model
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Scale-Free Model

Previous two mathematical network models are not representative

of many real-world social networks. Observed networks have

heavy-tailed degree distribution (power law).

(a)

Event Frequency

Event Size
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Scale-Free Model
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Scale-Free Model

e.g., Some websites have a very large number of other websites

connected to them, but most websites have only a few connections.

We can call this situation as cummulative advantage, or
preferential attachment.
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Scale-Free Model
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Scale-Free Model

Scale: Randomly choose one node, On average, if a node of degree
is obtained stably, it is called the scale of the network. scale-free
network distribution (Power Law):

p(k) =Ck™7, k:degree

Variance is oo, therefore scale-free.
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Scale-Free Model

E(k): average of degree.
In the scale-free condition, E(k) cannot represent k.

E(?) > = /km k2p(k)dk

kmin

kma:c
= / K2Ck™dk

kmin

3— 3—
o Ckmax T kmin 7

For large n(node), kpar — 00 and kyin = Constant.
E(k*) — oo, when2 <~y <3
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Scale-Free Model

'Rich-gets-richer’ phenomena has been shown to lead to the
power-law distribution in networks.

It's more complicated, because this is a network growth model not
static structure model.Also there are hubs with degree > 9.

G 5o
el & oe? o
2
IR
A i
W
22088 8
o Qg B8
Twos oo - &""\v., B0, -8
geagl e od
Bugal o B
o080 an® P, "9'” °
T R T
k2 Fo ¥ %30
8;? %8 % )
&%

kyung hee KIM

Network Analysis



Scale-Free Model
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Scale-Free Model

With modified options, there are some isolated nodes and it's more

realistic.
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Scale-Free Model
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Scale-Free Model

n=50 n=100

Growth of networks using preferential attachment model.
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Empirical Networks
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Empirical Networks

Data: Communication ties among 1,283 leaders of local public
health departments. (lhd data)

Builds three network models that have the same size and

approximately the same density as the lhd network.
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Empirical Networks
oe

Empirical Networks
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Lhd network has much higher transitivity than any of the models.

Name Size Density Avg. degree Transitivity Isolates
Erdos-Renyi 1283 0.003 4.404 0.002 21
Small world 1283 0.003 4.000 0.088 1
Preferential attachment 1283 0.002 2,195 0.003 109
Health department 1283 0.003 4.221 0.306 58
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